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Abstract—Residential electric vehicle charging load profile is
indispensable to achieve reliable control strategies for mitigating
negative effects on power distribution system due to emerging
electrified transportation. This paper introduces a data-driven
framework of charging load profile generation for residential
plug-in electric vehicles. Real world historical residential charg-
ing behavior data is utilized to construct empirical charging
decision making model by using machine learning algorithm.
A multiple channels method with kernel density estimation is
proposed to construct probability density functions for estimating
charging duration based on parking duration. A generation algo-
rithm considering parking time and travel demand dependency
is introduced to generate residential charging behaviors. This
framework is extensible to generate various charging load profiles
and simulate varied residential charging scenarios under different
number of households and charging rates. This will be crucial for
designing and validating residential charging control strategies.

I. INTRODUCTION

Increasing electric vehicle (EV) usage for accelerating trans-
portation electrification has crucial impacts on greenhouse
gas emissions and energy dependency. In order to improve
the adoption of electric vehicles, tremendous work is being
performed to electrify powertrain systems and the transporta-
tion system [1]. Lots of research works on charging station
placement, e.g. [2], [3], etc. to make EVs get charged easily.
Meanwhile, much research has been performed to design
energy management strategy in order to optimize the energy
usage of electric vehicles and redude their range anxiety, e.g.
[4]-[7]. Recently more than 700,000 plug-in vehicles are on
road in US since 2010 market introduction [8]. To meet charg-
ing demand from EVs, charging stations are installed at both
residential and commercial locations. However, the increasing
number of residential EV chargers is likely to increase the
effects on electricity generation adequacy, transformer aging,
and distribution system power quality, etc. as discussed in [9].

Several mitigation schemes proposed in the literature, in-
cluding indirect control using Time-Of-Use (TOU) rates [10]-
[13] and direct control using smart charging algorithms [14]—
[24], etc. However, if, while designing the TOU schedule,
the total demand and load profile of the EV load is not
taken into consideration, the effects of EV charging under a
TOU schedule might get worse [10]-[13]. The power system
could be utilized more efficiently if the EV charging rate and
charging start time are controlled to optimize a desired grid
objective [25], [26]. Therefore, an informative EV load profile
(including the available charging time interval, the required
energy, etc.) is fundamental to achieve a good performance

in control scheme. Much research used random distributions
to simulate the residential EV charging load profile [27]-[29].
But this doesn’t work to validate the performance of control
strategies in realistic application. To our best knowledge, there
is no residential charging load profile that is derived from
realistic data or informative enough to be used for system
level control strategies.

This paper aims to develop a scalable and flexible frame-
work that can generate informative residential EV charging
load profiles by taking advantage of a historical charging
behavior data set. Data-driven models can be constructed from
large scale historical data to describe the underlying realistic
charging behaviors. Based on these data-driven models, the
residential EV charging load profile can be generated with re-
gard to different number of households and charging rates. The
generated charging load profile for a single household illus-
trates the residential parking and charging behavior, including
arrival and departure time, arrival SOC and departure SOC
requirement for each home parking. The charging load profile
can provide comprehensive information to design residential
charging strategy for flattening the overall load shape profile,
minimizing the charging cost, or minimizing power losses, etc.

II. METHODOLOGY
A. Data Set for Modeling

Idaho National Laboratory partnered with ECOtality, Nis-
san, General Motors, and other city, regional and state gov-
ernments, electric utilities, other organizations and members of
the general public, to deploy over 12,000 AC Level 2 charging
units and over 100 DC fast chargers in 20 metropolitan
areas. Approximately 8,300 Nissan LEAF, Chevrolet Volts,
and Smart ForTwo Electric Drive vehicles were enrolled in the
project. The data collection phase of The EV Project ran from
January 1, 2011, through December 31, 2013 and captured
almost 125 million miles of driving and 4 million charging
events. The detailed information of this project and data set
can be found in [30].

Different areas usually have different residential charging
load patterns. The proposed data-driven generation framework
in this paper will be suitable for different areas. Charging load
profiles in different areas for both weekdays and weekends
can be derived by using historical data and the proposed
framework. Historical data in a specific area is needed to
construct the required data-driven models. In this paper, a
subset of historical data of Nissan Leaf in San Francisco
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Fig. 1. A diagram for daily residential parking behavior
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Fig. 2. A histogram for number of daily home parking in San Francisco
between 2012 and 2013

during weekdays will be utilized to demonstrate the data-
driven generation framework for residential charging load
profiles.

B. EV Residential Parking Model

The daily residential parking behavior of an EV can be
modeled as P, = (N, My, Msoc). In this model, NN, is the
number of home parking for each vehicle within a day, M; €
RNv*2 i a matrix for parking time information, including the
arrival time (parking start time) and departure time (parking
end time) in each column, respectively. Mgoc € ZNPXx2 g
a matrix for parking SOC information, including the arrival
SOC (parking start SOC, SOC,,) and departure SOC (parking
end SOC, SOC}) in each column, respectively. According to
SOC change/increase (the difference between arrival SOC and
departure SOC in each row of Mgpc), we can know whether
the EV performs charging action during a home parking.
All these information is illustrated in Figure 1. Based on
the parking time and SOC information, the following data-
driven decision making models are constructed for residential
charging load profile generation.

Figure 2 is an example to illustrate the distribution of
number of home parking for historical data in San Francisco.
It shows that lots of daily residential parking behavior only
has one time of parking at home. However, there are still
many daily residential parking activities that have more than
one home parking actions within one day. Most of residential
parking behaviors include no more than five parking events.

C. Residential Charging Decision Making

Residential charging decision making model is used to
describe whether a charging action occurs during a parking
action. Based on the knowledge from historical real world
data, this paper assumes that the residential charging decision
of a home parking action is determined by the home parking
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Fig. 3. Data-driven modeling process for charging decision making

duration (7},4) and the arrival SOC (SOC,). For each parking
action, parking duration is obtained by using the arrival time
and departure time. Therefore, we have the following model
to determine whether a charging action is necessary.

1, if charged
0, if not charged
(D
Due to different charging behaviors between the daily mid-
dle short-time parking and last long-time parking, the charg-
ing decision making for a home parking behavior has been
modeled separately for these two cases: fiq5:(SOCy, Tpq) for
last home parking and f,;q(SOCq,Tpq) for middle home
parking. They have similar model formulation only with
different parameters, which are obtained from different parts
of historical data. The K-nearest machine learning algorithm
is utilized to construct these two charging decision making
models by feeding the corresponding historical data. Figure 3
illustrates the detailed procedure on how to build these two
models. When new parking behavior data is obtained, we can
utilize these two models to decide whether a charging action
is necessary. If a charging action is needed, the following
charging duration model will help to decide how much the
charging time will be and the energy will be charged.

charging decision = f(SOC,, Tpq) = {

D. Charging Duration Model

The actual charging duration (7.) within each parking
duration when a charging action occurs is necessary to know
or predict how much energy will be charged or energy demand.
Assume that the charging action in the last home parking can
always achieve a full battery state because of its long parking
duration. Therefore, we only has to utilize data-driven method
to create a prediction model for charging duration of middle
parking behavior.

Figure 4 illustrates real world data distribution between SOC
increase and parking duration at each parking with charging
action from historical data. By using the historical data and
providing the realistic average charging rate (3.74kW for 2012
Nissan Leaf) and battery capacity (20kWh for 2012 Nissan
Leaf), we can calculate the charging duration according to
SOC increase and then find the potential relationship with
parking duration. Figure 4 demonstrates large uncertainties
of SOC increase by giving specific parking duration. This
means that realistic charging duration can have randomness
with regard to parking duration. Furthermore, the uncertainty
becomes larger when parking duration increases. In order
to handle these situations, we design a multiple channels
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Fig. 4. Distribution of SOC increase in percentage with regard to parking
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Fig. 5. Multiple channels method for charging duration prediction

method as shown in Figure 5 to produce the probability
density function for each given parking duration interval. The
size of these intervals is not necessary to be equal to each
other. Generally we can utilize small size of interval for
small parking duration. Assuming to use N parking dura-
tion intervals, we can obtain N different probability density
functions for charging duration prediction. By using these
obtained probability density functions, we can generate the
corresponding charging duration values. This is powerful to
simulate the realistic patterns between parking and charging
duration when a large size of samples are needed.

E. Overall Generation Framework for Residential Charging
Load Profile

The purpose of this paper is to generate electric vehicle
residential charging load profiles under different charging
rates. Historical data is used to construct data driven models,
e.g. charging decision making models and charging duration
model. In order to obtain charging load profile by giving a
charging rate and number of households, the charging decision
making models and charging duration model are used to
establish the entire generation procedure as shown in Figure 6.

The input information of the overall generation process
includes the historical data, the new charging rate and the
required number of households. The original parking behavior
in historical data { P, } is kept the same. We need to recalculate
the potential charging load or energy demand from residential
EVs at each parking under a newly given charging rate. By us-
ing the charging decision making models (fi45:(SOCq; Tpa),
fmia(SOCq,Tyq)) and charging duration model (De¢(Tpa)),
we can utilize the proposed Algorithm 1 to generate a new
data set ({P;**"'}) which can describe the new charging load
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Fig. 6. Overall generation framework for residential EV charging load profile

under charging rate C,.. In Algorithm 1, it works for one daily
sample in historical data to generate a new daily sample in
new data set. Therefore, each sample in historical data has
to be transformed by this algorithm so that we can obtain
the entire new profile {P/“}. After the generated whole
profile is obtained, we can sample this profile with replacement
according to the required number of households to get the
needed residential charging load profile.

Algorithm 1: Generation Algorithm

IHPUt P, flast(SOOaa Tpd), fmid(SOCaa Tpd)’
D (Tpa), Cr
Output: PP = (N, M, M2
Initialization: ¢ = 1, Calculate the SOC difference
between two consecutive parking to get
{Diff(k,k+ 1),k =1, ..., N, — 1}, where
lef(k, k+ 1) = Msoc(k, 2) — Msoc(k + 1, 1)
while : < N, do
SOC, = Msoc(i,1), Tpa = M(i,2) —
Yy = fmid(SOCa,Tpd)
if y==1 then
T = sample(Det (Tpa))
SOC,; = min(100, SOC,, + 100C, T, /capacity)

M, (i,1)

M (i, 1) = SOC,, MIE(i,2) = SOCqy
else
| MPev(i, 1) = SOC,, M1 (i,2) = SOC,
M (i, ) = Mq(i,:)
Moe(i +1,1) = M (7, 2) — Diff(i,i + 1)
L i=i+1

while : == N, do
SOC, = Msoc(Np, 1),
Tpd = Mt(Npa 2) - Mt(va 1)
Y= flast(SOCaa Tpd)
if y==1 then
SOC,; = min(100, SOC,, + 100C, T, /capacity)
L MZIEY(N,y, 1) = SOCq, MY (N, 2) = SOCy

soc soc

else
LMnew N 1)

soc

SOC,. M (N, 2) =

soc

SOC,

III. RESULTS

In order to demonstrate the functionality of the proposed
generation framework for residential charging load profiles,
we illustrate the results by utilizing a subset data of 2012
Nissan Leaf in San Francisco in EV Project. As shown in



Figure 2, the residential parking behavior within one day
can have several parking actions. In the proposed generation
process, we do not change the parking time information but
generate new charging demand (SOC increase) in each parking
action according to new charging rates. Figure 2 illustrates that
there are at most nine residential parking actions within one
day. Most of the samples only have three residential parking
actions. Therefore, the following results only demonstrate the
results for data samples with one, two and three residential
parking actions within one day.

Results compare the statistical analysis under three different
cases: actual case is for the original historical data; 3.74kW
case is for the newly generated profile by using charging rate
of 3.74kW; 6.48kW case is for the newly generated profile by
using charging rate of 6.48kW. Each figure from Figure 7 to
Figure 12 includes both the percentage of charging actions dur-
ing parking and SOC increase distribution of charging actions.
Percentage of charging actions during parking describes the
percentage of parking actions in which charging actions take
place. SOC increase distribution of charging actions describes
the overall distribution of SOC increase for all charging
actions. This is a distribution to show the energy demand from
residential charging.

Figure 8, 10 and 11 illustrate the statistic analysis results
of middle parking for charging load profiles with two and
three parking actions within one day. Very little difference
exists in the results for percentage of charging actions during
parking. This is determined by the charging decision making
model fp,;qa(SOCy, Tpq). This similar percentage means the
charging decision making model is stable under different
charging rates. Distributions of SOC increase demonstrate the
different patterns under different charging rates. Generally,
distributions of case 3.74kW are close to those from actual
historical data. This is because that the average actual charging
rate is close to 3.74kW. Case 6.48kW has larger percentages on
high SOC increase values. This generally follows the realistic
mechanism that, with the same available charging duration,
more energy will be charged by using a higher charging
rate. These results show a good capability for our proposed
framework to generate reasonable residential charging load
profiles under different charging rates.

Figure 7, 9 and 12 illustrate statistic analysis results of
last parking actions for charging load profiles with one, two,
three parking actions within one day, respectively. In each
result, the percentage of charging actions during parking are
almost the same. This shows that charging decision model
f1ast(SOCy, Tpq) works well. But we still can see the light
difference between investigated cases under different charging
rates. If the daily residential parking behavior has more than
one parking actions, the percentage of charging actions for the
last parking has got a slightly decrease when the charging rate
increases. This is because that more energy can be charged
during middle parking due to a higher charging rate. This
illustrates our proposed framework can capture realistic time
dependence along different parking actions when charging rate
is changed. The SOC increase distributions are almost the

Fig. 7. Statistic results of last parking actions for residential charging load
profile with only one parking action within one day

Fig. 8. Statistic results of middle parking actions for residential charging
load profile with two parking actions within one day

same under different charging rates. The slightly difference in
Figure 9 and 12 is caused by more charged energy in previous
middle parking actions due to higher charging rates.

IV. CONCLUSION

This paper introduces a data-driven framework to generate
residential EV charging load profiles. To our best knowledge,
this is the first work to construct realistic residential charging
load profiles based on real-world collected data. The estab-
lished data-driven models for charging decision making and
charging duration make the framework extensible for different
scales of scenarios, i.e. different number of households and
charging rates. This is durable for future application with
large-scale deployment of EVs. Detailed experiments and
comparisons show the capability and validate the functionality
of the proposed framework. This work will be important and
fundamental for developing system-level residential charging
strategies with benefit of realistic EV charging load profile.



Fig. 12. Statistic results of last parking actions for residential charging load
Fig. 9. Statistic results of last parking actions for residential charging load  profile with three parking actions within one day

profile with two parking actions within one day
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